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1. Introduction

The theoretical basis for describing elastic scattering of light by particles and
surfaces is formed by classical electromagnetics. In order to make this volume
sufficiently self-contained, this introductory chapter provides a summary of
those concepts and equations of electromagnetic theory that will be used
extensively in later chapters and introduces the necessary notation.

We start by formulating the macroscopic Maxwell equations and
constitutive relations and discussing the fundamental time-harmonic plane-
wave solution that underlies the basic optical idea of a monochromatic parallel
beam of light. This is followed by the introduction of the Stokes parameters
and a discussion of their ellipsometric content. Then we consider the concept
of a quasi-monochromatic beam of light and its implications and briefly
discuss how the Stokes parameters of monochromatic and quasi-
monochromatic light can be measured in practice. In the final two sections, we
discuss another fundamental solution of Maxwell’s equations in the form of a
time-harmonic outgoing spherical wave and introduce the concept of the
coherency dyad, which plays a vital role in the theory of multiple light
scattering by random particle ensembles.

2.  Maxwell’s equations and constitutive relations

The theory of classical optics phenomena is based on the set of four Maxwell’s
equations for the macroscopic electromagnetic field at interior points in
matter, which in SI units read:
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,) ,(     ) ,(
t

tt
∂

∂−=×∇ rr BE (2.2)

,0    ) ,( =⋅∇ trB (2.3)

G. Videen, Ya. Yatskiv and M. Mishchenko (eds.),
Photopolarimetry in Remote Sensing, pp. 1–44.
2004 Kluwer Academic Publishers. Printed in the Netherlands.

1



M. I. MISHCHENKO AND L. D. TRAVIS2
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where E is the electric and H the magnetic field, B the magnetic induction, D
the electric displacement, and ρ  and J the macroscopic (free) charge density
and current density, respectively. All quantities entering Eqs. (2.1)–(2.4) are
functions of time, t, and spatial coordinates, r. Implicit in the Maxwell
equations is the continuity equation

,0    ) ,(    ) ,( =⋅∇+
∂

∂ t
t

t rr Jρ (2.5)

which is obtained by combining the time derivative of Eq. (2.1) with the
divergence of Eq. (2.4) and taking into account that .0    )( =×∇⋅∇ a  The
vector fields entering Eqs. (2.1)–(2.4) are related by

), ,(    ) ,(    ) ,( 0 ttt rrr PED += �  (2.6)

), ,(    ) ,( 1    ) ,(
0

ttt rrr MBH −=
µ

(2.7)

where P  is the electric polarization (average electric dipole moment per unit
volume), M is the magnetization (average magnetic dipole moment per unit
volume), and 0�  and 0µ  are the electric permittivity and the magnetic
permeability of free space, respectively.

Equations (2.1)–(2.7) are insufficient for a unique determination of the
electric and magnetic fields from a given distribution of charges and currents
and must be supplemented with so-called constitutive relations:

), ,()(    ) ,( 0 tt rrr EP χ�= (2.8)
), ,()(    ) ,( tt rrr HB µ= (2.9)

), ,()(    ) ,( tt rrr EJ σ=       (2.10)

where χ  is the electric susceptibility, µ  the magnetic permeability, and σ
the conductivity. Equations (2.6) and (2.8) yield

), ,()(    ) ,( tt rrr ED �=       (2.11)

where

)](    1[    )( 0 rr χ+= ��       (2.12)

is the electric permittivity. For linear and isotropic media, ,χ  ,µ  ,σ  and �
are scalars independent of the fields. The microphysical derivation and the
range of validity of the macroscopic Maxwell equations are discussed in detail
by Jackson [1].

The constitutive relations (2.9)–(2.11) connect the field vectors at the same
moment of time t and are valid for electromagnetic fields in a vacuum and also
for electromagnetic fields in macroscopic material media provided that the
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fields are constant or vary in time rather slowly. For a rapidly varying field in
a material medium, the state of the medium depends not only on the current
value of the field but also on the values of the field at all previous times.
Therefore, for a linear, time-invariant medium, the constitutive relations (2.9)–
(2.11) must be replaced by the following general causal relations that take into
account the effect of the prior history on the electromagnetic properties of the
medium:

), ,() ,(~d     ) ,(
  

  
ttttt

t
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rrr ED �       (2.13)
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rrr EJ σ       (2.15)

The medium characterized by the constitutive relations (2.13)–(2.15) is called
time-dispersive.

It is straightforward to rewrite the Maxwell equations and the continuity
equation in an integral form. Specifically, integrating Eqs. (2.2) and (2.4) over
a surface S bounded by a closed contour C (see Fig. 2.1) and applying the
Stokes theorem,

,d     ˆ)(d 
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CS
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yield
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where we employ the usual convention that the direction of the differential

n̂

ld

Sd

S
C

Figure 2.1: A finite surface S bounded by a closed contour C.



M. I. MISHCHENKO AND L. D. TRAVIS4

length vector ld  is related to the direction of the unit vector along the local
normal to the surface n̂  according to the right-hand rule.

Similarly, integrating Eqs. (2.1), (2.3), and (2.5) over a finite volume V
bounded by a closed surface S (see Fig. 2.2) and using the Gauss theorem,

,ˆd     d 
  

  
nAAr ⋅=⋅∇ S

SV
      (2.19)

we derive

,d     ˆd 
  

  
ρrn =⋅

VS
SD       (2.20)
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      (2.21)

,d       ˆd 
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∂
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VS t
SJ       (2.22)

where the unit vector n̂  is directed along the outward local normal to the
surface.

3. Boundary conditions

The Maxwell equations are strictly valid only for points in whose
neighborhood the physical properties of the medium, as characterized by the
constitutive parameters ,χ  ,µ  and, σ  vary continuously. However, across
an interface separating one medium from another the constitutive parameters
may change abruptly, and one may expect similar discontinuous behavior of
the field vectors E, D, B, and H. The boundary conditions at such an interface
can be derived from the integral form of the Maxwell equations as follows.
Consider two different continuous media separated by an interface S as shown
in Fig. 3.1. Let n̂  be a unit vector along the local normal to the interface,
pointing from medium 1 toward medium 2. Let us take the integral in Eq.

V

n̂

S

Figure 2.2: A finite volume V bounded by a closed surface S.
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(2.21) over the closed surface of a small cylinder with bases parallel to a small
surface element S∆  such that half of the cylinder is in medium 1 and half in
medium 2. The contribution from the curved surface of the cylinder vanishes
in the limit ,0    ∆ →h  and we thus obtain

,0    ˆ)    ( 1 2 =⋅− nBB (3.1)

which means that the normal component of the magnetic induction is
continuous across the interface.

Similarly, evaluating the integrals on the left- and right-hand sides of Eq.
(2.20) over the surface and volume of the cylinder, respectively, we derive

,    ∆lim    ˆ)    (
0∆

12 S
h

h ρρ ==⋅−
→

nDD (3.2)

where Sρ  is the surface charge density (charge per unit area) measured in
coulombs per square meter. Thus, there is a discontinuity in the normal
component of D if the interface carries a layer of surface charge density.

Let us now consider a small rectangular loop of area A∆  formed by sides
of length l∆  perpendicular to the local normal and ends of length h∆  parallel
to the local normal, as shown in Fig. 3.2. The surface integral on the right-
hand side of Eq. (2.17) vanishes in the limit ,0    ∆ →h

,0    )ˆˆ(∆∆lim    )ˆˆ(d  lim
0∆

  

∆  0∆
=×⋅=×⋅

→→
lnln BB hlS

hAh

so that

.0    )    (ˆ 12 =−⋅ EEl  (3.3)

Since the orientation of the rectangle – and hence also of l̂  – is arbitrary, Eq.
(3.3) means that the vector 12     EE −  must be perpendicular to the interface.
Thus,

S S

n̂
h

1Medium

2Medium

Figure 3.1: Pillbox used in the derivation of boundary conditions for the B and D.
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,    )    (ˆ 12 0n =−× EE (3.4)

where 0 is a zero vector. This implies that the tangential component of E is
continuous across the interface.

Similarly, Eq. (2.18) yields

,)ˆˆ(  )ˆˆ(∆ lim )  (ˆ    
0∆

12 S
h

h JJHH ⋅×=⋅×=−⋅
→

lnlnl       (3.5)

where SJ  is the surface current density measured in amperes per meter. Since

,ˆ)ˆˆ(    ˆ nlnl ××= (3.6)

we can use the vector identity

)(    )( cbacba ×⋅=⋅×  (3.7)

to derive

.)ˆˆ(  )]  (ˆ[)ˆˆ(   )  (]ˆ)ˆˆ[(  1212 SJHHHH ⋅×=−×⋅×=−⋅×× lnnlnnln
(3.8)

Since this equality must be valid for any orientation of the rectangle and, thus,
of the tangent unit vector ,l̂  we finally have

,  )  (ˆ    12 SJHH =−×n (3.9)

which means that there is a discontinuity in the tangential component of H if
the interface can carry a surface current. Media with finite conductivity cannot
support surface currents so that

Figure 3.2: Rectangular loop used in the derivation of boundary conditions for the
E and H .
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0n   )  (ˆ    12 =−× HH   (finite conductivity).       (3.10)

The boundary conditions (3.1), (3.2), (3.4), (3.9), and (3.10) are useful in
solving the differential Maxwell equations in different adjacent regions with
continuous physical properties and then linking the partial solutions to
determine the fields throughout all space.

4.  Time-harmonic fields

Let us now assume that all fields and sources are time harmonic (or
monochromatic), which means that their time dependence can be fully
described by expressing them as sums of terms proportional to either tωcos
or ,sin tω where ω  is the angular frequency. It is standard practice to
represent real monochromatic fields as real parts of the respective complex
time-harmonic fields, e.g.,

)]iexp()(Re[    ) ,(Re    ) ,( ttt ω−== rErErE
  )]exp(i)(    )iexp()([  2

1 tt ωω rErE ∗+−=    (4.1)

and analogously for D, H, B, J, ,ρ  P, and M, where ,1i −=  E(r) is
complex, and the asterisk denotes a complex-conjugate value. Equations (2.1)–
(2.5) then yield the following frequency-domain Maxwell equations and
continuity equation for the time-independent components of the complex
fields:

),(ρ    )( rrD =⋅∇ (4.2)
),(i    )( rBrE ω=×∇       (4.3)

,0    )( =⋅∇ rB        (4.4)
),(i    )(    )( rDrJrH ω−=×∇       (4.5)

,0    )(    )(ρi =⋅∇+− rJrω (4.6)

where we emphasize the typographical distinction between the real quantities
E, D, H, B, J, and ρ  and their complex counterparts E, D, H, B, J, and ρ.

The constitutive relations remain unchanged in the frequency domain for a
non-dispersive medium:

),()(    )( rErrD �= (4.7)
),()(    )( rHrrB µ= (4.8)

).()(    )( rErrJ σ= (4.9)

For a time-dispersive medium, we can substitute the monochromatic fields of
the form (4.1) into Eqs. (2.13)–(2.15), which yields

),() ,(    )( rErrD ω�= (4.10)
),() ,µ(    )( rHrrB ω= (4.11)

),() ,σ(    )( rErrJ ω= (4.12)
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 where

),iexp() ,(~d     ) ,(
  

0  
ttt ωω rr �

∞
=� (4.13)

),iexp() ,(~d     ) ,µ(
  

0  
ttt ωµω rr

∞
= (4.14)

)iexp() ,(~d     ) ,σ(
  

0  
ttt ωσω rr

∞
= (4.15)

are complex functions of the angular frequency. Note that we use sloping
Greek letters in Eqs. (4.7)–(4.9) and upright Greek letters in Eqs. (4.10)–(4.12)
to differentiate between the frequency-independent and the frequency-
dependent constitutive parameters, respectively. Equations (4.2) and (4.5) can
be rewritten in the form

,0    )]() ,([ =⋅∇ rEr ωε (4.16)
),() ,(i    )( rErrH ωωε−=×∇ (4.17)

where

ω
ωωωε ) ,(σi    ) ,(    ) ,( rrr += � (4.18)

is the so-called complex permittivity. Again, the reader should note the
typographical distinction between the frequency-dependent electric
permittivity � (which can, in principle, be complex-valued for a dispersive
medium) and the complex permittivity .ε  We will show later that a direct
consequence of a complex-valued ε  and/or µ  is a non-zero imaginary part of
the refractive index (Eq. (6.19)), which causes absorption of electromagnetic
energy (Eq. (6.20)) by converting it into other forms of energy, e.g., heat.

The scalar or the vector product of two real vector fields is not equal to the
real part of the respective product of the corresponding complex vector fields.
Instead,

),(),(    ),( ttt rrr ba ⋅=c
  )]exp(i)(    )iexp()([  4

1 tt ωω rara ∗+−=

 )]exp(i)(    )iexp()([ tt ωω rbrb ∗+−⋅

   )],i2exp()()(    )()(Re[  2
1 tω−⋅+⋅= ∗ rbrarbra      (4.19)

and similarly for a vector product. Usually the angular frequency ω  is so high
that traditional optical measuring devices are not capable of following the
rapid oscillations of the instantaneous product values but rather respond to a
time average

), ,(d  1    ) ,(
  

  
ττ rr cc

+
=��

Tt

t
t T

t       (4.20)
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where T is a time interval long compared with ω1 . Therefore, Eqs. (4.19) and
(4.20) imply that the time average of a product of two real fields is equal to
one half of the real part of the respective product of one complex field with the
complex conjugate of the other, e.g.,

)].()(Re[    ) ,( 2
1 rbrar ∗⋅=�� ttc (4.21)

5.  The Poynting vector

Both the value and the direction of the electromagnetic energy flow are
described by the so-called Poynting vector S. The expression for S can be
derived by considering conservation of energy and taking into account that the
magnetic field does no work and that for a local charge q the rate of doing
work by the electric field is ), ,() ,() ,( tttq rrvr E⋅  where v is the velocity of
the charge. Indeed, the total rate of doing work by the electromagnetic field in
a finite volume V is given by

) ,() ,(d 
  

  
tt

V
rrr EJ ⋅ (5.1)

and represents the rate of conversion of electromagnetic energy into
mechanical or thermal energy. This power must be balanced by the
corresponding rate of decrease of the electromagnetic field energy within the
volume V. Using Eqs. (2.2) and (2.4) and the vector identity

),(    )(    )( baabba ×∇⋅−×∇⋅=×⋅∇ (5.2)

we derive

�
�

�
�
�

�

∂
∂−×∇⋅=⋅

tVV

DHEEJ     d     d 
  

  

  

  
rr

    .        )(d   
  

  �
�

�
�
�

�

∂
∂⋅+

∂
∂⋅+×⋅∇−=

ttV

BHDEHEr (5.3)

Let us first consider a linear medium without dispersion and introduce the total
electromagnetic energy density,

)], ,() ,(    ) ,() ,([    ) ,( 2
1 tttttu rrrrr HBDE ⋅+⋅= (5.4)

and the Poynting vector,

.) ,() ,(    ) ,( ttt rrr HES ×= (5.5)

The latter represents electromagnetic energy flow and has the dimension
[energy/(area � time)]. Using also the Gauss theorem (2.19), we finally obtain

,0    ˆd     d     d 
  

  

  

  
=⋅+

∂
∂+⋅ nrr SEJ S

t
u

SVV
(5.6)
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where the closed surface S bounds the volume V and n̂  is a unit vector in the
direction of the local outward normal to the surface. Equation (5.6) manifests
the conservation of energy by requiring that the rate of the total work done by
the fields on the sources within the volume, the time rate of change of
electromagnetic energy within the volume, and the electromagnetic energy
flowing out through the volume boundary per unit time add up to zero. Since
the volume V is arbitrary, Eq. (5.3) also can be written in the form of a
differential continuity equation:

.        EJS ⋅−=⋅∇+
∂
∂

t
u  (5.7)

Since ,0    )( =×∇⋅∇ a  it is clear from Eq. (5.7) that adding the curl of a
vector field to the Poynting vector will not change the energy balance, which
seems to suggest that there is a degree of arbitrariness in the definition of the
Poynting vector. However, relativistic considerations discussed in section
12.10 of Jackson [1] show that the definition (5.5) is, in fact, unique.

Let us now allow the medium to be dispersive. Instead of Eq. (5.1), we
now consider the integral

)()(d  
2
1   

  
rErrJ ⋅∗

V
(5.8)

whose real part gives the time-averaged rate of work done by the
electromagnetic field (cf. Eq. (4.21)). Using Eqs. (4.3), (4.5), and (5.2), we
derive

)](i    )([)(d  
2
1    )()(d  

2
1   

  

  

  
rDrHrrErErrJ ∗∗∗ −×∇⋅=⋅ ω

VV

          )]()([{d  
2
1   

  

  
rHrEr ∗×⋅∇−=

V

      .)]}()(    )()([ i  rHrBrDrE ∗∗ ⋅−⋅+ ω
(5.9)

If we now define the complex Poynting vector by

)]()([    )( 2
1 rHrErS ∗×= (5.10)

and the complex electric and magnetic energy densities by

)],()([    )( 4
1 rDrEr ∗⋅=ew (5.11)

)],()([    )( 4
1 rHrBr ∗⋅=mw (5.12)

respectively, and apply the Gauss theorem, we then have

.0    )](    )([d  i2    ˆ)(d     )()(d  
2
1   

  

  

  
=−+⋅+⋅∗ rrrnrSrErrJ me

VSV
wwS ω

(5.13)
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Obviously, the real part of Eq. (5.13) manifests the conservation of energy for
the corresponding time-averaged quantities. In particular, the time-averaged
Poynting vector tt �� ) ,(rS  is equal to the real part of the complex Poynting
vector,

)].(Re[    ) ,( rSr =�� ttS  (5.14)

The net rate W at which the electromagnetic energy crosses the surface S is
given by

.ˆ) ,(d     nr ⋅��−= t
S

tSW S (5.15)

The rate is defined such that it is positive if there is a net transfer of
electromagnetic energy into the volume V and is negative otherwise.

6.  Plane-wave solution

Consider an infinite homogeneous medium. The use of the formulas

,)(         )( aaa ⋅∇+⋅∇=⋅∇ fff (6.1)
,)(         )( aaa ×∇+×∇=×∇ fff (6.2)

)iexp(i    )iexp( rkkrk ⋅=⋅∇ (6.3)

in Eqs. (4.3), (4.4), (4.16), and (4.17) shows that the complex field vectors

),i  iexp(    ) ,( 0 tt ω−⋅= rkErE (6.4)
),i  iexp(    ) ,( 0 tt ω−⋅= rkHrH (6.5)

where ,0E ,0H  and k are constant complex vectors, are a solution of the
Maxwell equations provided that there are no sources and that

,0    0 =⋅ Ek (6.6)

,0    0 =⋅ Hk (6.7)

,µ    00 HEk ω=× (6.8)
.    00 EHk ωε−=× (6.9)

The so-called wave vector k is usually expressed as

,i        IR kkk += (6.10)

where Rk  and Ik  are real vectors.  Thus

),i  iexp()exp(    ) ,( RI0 tt ω−⋅⋅−= rkrkErE (6.11)
).i  iexp()exp(    ) ,( RI0 tt ω−⋅⋅−= rkrkHrH (6.12)

The )exp( I0 rkE ⋅−  and )exp( I0 rkH ⋅−  are the complex amplitudes of the
electric and magnetic fields, respectively, and tωφ       R −⋅= rk  is their phase.
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The vector Rk  is normal to the surfaces of constant phase, whereas Ik  is
normal to the surfaces of constant amplitude. Indeed, a plane surface normal to
a real vector K is described by constant,    =⋅Kr  where r is the radius vector
drawn from the origin of the reference frame to any point in the plane (see Fig.

KrKrKr
K

⋅=⋅=⋅ 321

:tonormalsurfacePlane

O

K

1r

2r

3r

Figure 6.1: Plane surface normal to a real vector K.

O

Rk

t

tt +

s
tts ωφ )( R −= k

)()( R tttts +−+= ωφ k

)( tts +

)(ts

Figure 6.2: The plane of constant phase constant=φ  travels a distance s∆  over
the time period t∆ . The s-axis is drawn from the origin of the coordinate system
along the vector .Rk
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6.1). Also, it is easy to see that surfaces of constant phase propagate in the
direction of Rk  with the phase velocity

.    Rkω=v  (6.13)

Indeed, the planes corresponding to the instantaneous times t and tt ∆+  are
separated by the distance R∆    ∆ kts ω=  (see Fig. 6.2), which gives Eq.
(6.13). Thus Eqs. (6.4) and (6.5) describe a  plane electromagnetic wave
propagating in a homogeneous medium without sources. This is a very
important solution of the Maxwell equations because it embodies the concept
of a perfectly monochromatic parallel beam of light of infinite lateral extent
and represents the transport of electromagnetic energy from one point to
another.

Equations (6.4) and (6.8) yield

).,( 
µ

1    ),( tt rEkrH ×=
ω

 (6.14)

Therefore, a plane electromagnetic wave always can be considered in terms of
only the electric (or only the magnetic) field.

The electromagnetic wave is called homogeneous if Rk  and Ik  are
parallel (including the case Ik  = 0); otherwise it is called inhomogeneous.
When ,  IR kk  the complex wave vector can be expressed as

,ˆ)i    (    IR nk kk +=  where n̂  is a real unit vector in the direction of
propagation and both Rk  and Ik  are real and nonnegative.

According to Eqs. (6.6) and (6.7), the plane electromagnetic wave is
transverse: both 0E  and 0H  are perpendicular to k. Furthermore, it is evident
from either Eq. (6.8) or Eq. (6.9) that 0E  and 0H  are mutually perpendicular:

.0    00 =⋅ HE  Since ,0E ,0H  and k  are, in general, complex vectors, the
physical interpretation of these facts can be far from obvious. It becomes most
transparent when both ,ε  ,µ  and k  are real. The reader can easily verify that
in this case the real field vectors E and H are mutually perpendicular and lie in
a plane normal to the direction of wave propagation n̂  (see Fig. 6.3).

Taking the vector product of k with the left-hand side and the right-hand
side of Eq. (6.8) and using Eq. (6.9) and the vector identity

)(    )(    )( baccabcba ⋅−⋅=×× (6.15)

together with Eq. (6.6) yield

.µ    2εω=⋅kk (6.16)

In the practically important case of a homogeneous plane wave, we obtain
from Eq.  (6.16)

,    µ    i        IR c
kkk mωεω ==+= (6.17)
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where k is the wave number,

00

1    
µ�

=c (6.18)

is the speed of light in a vacuum (cf. Eq. (6.13)), and

µ    µ    i            
00

IR ε
µ

ε
ω

cck ==+==
�

mmm (6.19)

is the complex refractive index with a non-negative real part Rm  and a non-
negative imaginary part .Im  Thus, the complex electric field vector of the
homogeneous plane wave has the form

.i  ˆ  i exp ˆ  exp    ) ,( RI0 �
�

�
�
�

� −⋅�
�

�
�
�

� ⋅−= t
cc

t ωωω rnrnErE mm   (6.20)

If the imaginary part of the refractive index is non-zero, then it determines the
decay of the amplitude of the wave as it propagates through the medium,
which is thus absorbing. On the other hand, a medium is nonabsorbing if it is
non-dispersive �    ( =�  and )  µ  µ=  and lossless ),0    (σ =  which causes the

refractive index µ�c      R == mm  to be real-valued. The real part of the
refractive index determines the phase velocity of the wave:

Plane of constant phase
and constant amplitude

n̂

r

y

x

O

z H

E

Figure 6.3: Plane wave propagating in a homogeneous medium with no dispersion
and losses.
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.    
Rm

c=v (6.21)

In a vacuum, 1        R == mm  and .  c=v
As follows from Eqs. (5.10), (5.14), (6.4), (6.5), (6.8), and (6.15), the time-

averaged Poynting vector of a plane wave is

.
µ2

)]()[(    )]()([ Re    ) ,( �
�
�

�
�
�
�

� ⋅−⋅=�� ∗

∗∗∗∗

ω
rEkrErErEkr ttS (6.22)

If the wave is homogeneous, 0    )( =⋅ rEk  causes .0    )( =⋅∗ rEk  Therefore,

.ˆ ˆ  2  exp 
µ

 Re    ) ,( I
2

02
1 nrnEr �

�

�
�
�

� ⋅−�
�
�

�
�
�
�

�
=�� m

c
t t

ωεS (6.23)

Thus, tt �� ) ,(rS  is in the direction of propagation and its absolute value, called
intensity, is attenuated exponentially provided that the medium is absorbing:

),ˆexp(    ) ,(    )( 0 rnrr ⋅−=��= αItI tS (6.24)

where 0I  is the intensity at r = 0.  The absorption coefficient α  is

,4    2    
0

I
I λ

πωα m
m ==

c
(6.25)

where

ω
πλ c2    0 = (6.26)

is the free-space wavelength. The intensity has the dimension of
monochromatic energy flux, [energy/(area ×  time)], and is equal to the
amount of electromagnetic energy crossing a unit surface element normal to n̂
per unit time.

The expression for the time-averaged energy density of a plane wave
propagating in a medium without dispersion follows from Eqs. (4.7), (4.8),
(4.21) and (5.4):

)].()(    )()([    ) ,( 4
1 rHrHrErEr ∗∗ ⋅+⋅=�� µ�ttu (6.27)

Assuming further that the medium is lossless and recalling Eqs. (6.6), (6.8),
and (6.16) as well as the vector identity

),)((    ))((    )()( cbdadbcadcba ⋅⋅−⋅⋅=×⋅× (6.28)

we derive

.    ) ,( 2
02

1 Er �=�� ttu (6.29)
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Comparison of Eqs. (6.23), (6.24), and (6.29) yields

,) ,(    ) ,( 1    )( tt tutuI ��=��= rrr v
µ�

(6.30)

where v is the speed of light in the nonabsorbing material medium. The
physical interpretation of this result is quite clear: the amount of
electromagnetic energy crossing a surface element of unit area normal to the
direction of propagation per unit time is equal to the product of the speed of
light and the amount of electromagnetic energy per unit volume.

Figure 6.4 gives a simple example of a plane electromagnetic wave
propagating in a nonabsorbing homogeneous medium and described by the
following real electric and magnetic field vectors:

,ˆ )2    cos(    ),( zr πω −−= tkyt EE (6.31)
,ˆ )2    cos(    ),( xr πω −−= tkyt HH (6.32)

where E, H, and k are real and x̂  and ẑ  are the unit vectors along the x-axis
and the z-axis, respectively. Panel (a) shows the electric and magnetic fields as
a function of y at the moment t = 0, while panel (b) depicts the fields as a
function of time at any point in the plane y = 0. The period of the sinusoids in
panel (a) is given by

k
πλ 2    = (6.33)

H

x

y

z

E

H

x

z

E

ωπ2

(a)

(b)

t

λ

Figure 6.4: Plane electromagnetic wave described by Eqs. (6.31) and (6.32).
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and defines the wavelength of light in the nonabsorbing material medium,
whereas the period of the sinusoids in panel (b) is equal to .2 ωπ

It is straightforward to verify that the choice of the )iexp( tω  rather than
)iexp( tω−  time dependence in the complex representation of time-harmonic

fields in Eq. (4.1) would have led to IR i        mmm −=  with a non-negative Im .
The )iexp( tω−  time factor convention adopted here was used in many books
on optics and light scattering (e.g., [2–6]), electromagnetics (e.g., [1,7–9]), and
solid-state physics. On the other hand, van de Hulst [10], Kerker [11], and
Hovenier and van der Mee [12] use the time factor )iexp( tω , which implies a
non-positive imaginary part of the complex refractive index. It does not matter
in the final analysis which convention is chosen because all measurable
quantities of practical interest are always real. However, it is important to
remember that once a choice of the time factor has been made, its consistent
use throughout all derivations is imperative.

7.  Coherency matrix and Stokes parameters

Traditional optical devices cannot measure the electric and magnetic fields
associated with a beam of light but rather measure quantities that are time
averages of real-valued linear combinations of products of field vector
components and have the dimension of the intensity. In order to define these
quantities, we use polar spherical coordinates associated with the local right-
handed Cartesian coordinate system with origin at the observation point, as
shown in Fig. 7.1. Assuming that the medium is homogeneous and has no
dispersion and losses, we specify the direction of propagation of a plane
electromagnetic wave by a unit vector n̂  or, equivalently, by a couple }, ,{ ϕθ

ˆ

ˆ

ϕ

θ

x

yO

z

n̂

Figure 7.1: Local coordinate system used to describe the direction of propagation
and polarization state of a plane electromagnetic wave at the observation point O.
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where ] ,0[ πθ ∈  is the polar (zenith) angle measured from the positive z-axis
and )2 ,0[ πϕ ∈  is the azimuth angle measured from the positive x-axis in the
clockwise direction when looking in the direction of the positive z-axis. Since
the component of the electric field vector along the direction of propagation n̂
is equal to zero, the electric field at the observation point can be expressed as

,        ϕθ EEE +=  where θE  and ϕE  are the θ - and ϕ -components of the

electric field vector, respectively. The component θE ˆ    θθ E=  lies in the
meridional plane (i.e., the plane through n̂  and the z-axis), whereas the
component φE ˆ    ϕϕ E=  is perpendicular to this plane. θ̂  and φ̂  are the

corresponding unit vectors such that .ˆˆ    ˆ φθn ×=
The specification of a unit vector n̂  uniquely determines the meridional

plane of the propagation direction except when n̂  is oriented along the
positive or negative direction of the z-axis. Although it may seem redundant to
specify ϕ  in addition to θ  when 0    =θ  or ,π  the unit θ̂  and φ̂  vectors and,
thus, the electric field vector components θE  and ϕE  still depend on the
orientation of the meridional plane. Therefore, we always assume that the
specification of n̂  implicitly includes the specification of the appropriate
meridional plane in cases when n̂  is parallel to the z axis.

Consider a plane electromagnetic wave propagating in a homogeneous
medium without dispersion and losses and given by

)i  ˆiexp(    ),( 0 tkt ω−⋅= rnErE (7.1)

with a real k. The simplest complete set of linearly independent quadratic
combinations of the electric field vector components with non-zero time
averages consists of the following four quantities:

,    ),(),( 00
∗∗ = θθθθ EEtEtE rr        ,    ),(),( 00

∗∗ = ϕθϕθ EEtEtE rr

,    ),(),( 00
∗∗ = θϕθϕ EEtEtE rr        .    ),(),( 00

∗∗ = ϕϕϕϕ EEtEtE rr

The products of these quantities and µ�2
1  have the dimension of

monochromatic energy flux and form the 22×  coherency (or density) matrix
ρ  [2]:

.  
2
1        

0000

0000

2221

1211

�
�
�

�

�
�
�

�
=�

�

�
�
�

�= ∗∗

∗∗

ϕϕθϕ

ϕθθθ

µρρ
ρρ

EEEE
EEEE�ρ (7.2)

The completeness of the set of the four coherency matrix elements means that
any plane wave characteristic directly observable with a traditional optical
instrument is a real-valued linear combination of these quantities.

Since 12ρ  and 21ρ  are, in general, complex, it is convenient to introduce
an alternative complete set of four real, linearly independent quantities called
Stokes parameters [13]. We first group the elements of the 22×  coherency
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matrix into a 14×  coherency column vector:
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�J (7.3)

The Stokes parameters I, Q, U, and V are then defined as the elements of a
14×  column Stokes vector I  as follows:

 ,
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where

.
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Conversely,

,     1 IDJ −= (7.6)

where

.
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i100

i100
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−
=−D (7.7)

By virtue of being real-valued quantities and having the dimension of
energy flux, the Stokes parameters form a complete set of quantities that are
needed to characterize a plane electromagnetic wave, inasmuch as it is subject
to practical analysis. This means that (i) any other observable quantity is a
linear combination of the four Stokes parameters, and (ii) it is impossible to
distinguish between two plane waves with the same values of the Stokes
parameters using a traditional optical device (the so-called principle of optical
equivalence). Indeed, the two complex amplitudes )iexp(0 θθθ ∆aE =  and

)iexp(0 ϕϕϕ ∆aE =  are characterized by four real numbers: the non-negative
amplitudes θa  and ϕa  and the phases θ∆  and .∆∆∆ θϕ −=  The Stokes
parameters carry information about the amplitudes and the phase difference

,∆  but not about .θ∆  The latter is the only quantity that could be used to
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distinguish different waves with the same ,θa  ,ϕa  and ∆  (and thus the same
Stokes parameters), but it vanishes when a field vector component is
multiplied by the complex conjugate value of the same or another field vector
component.

The first Stokes parameter, I, is the intensity introduced in the previous
section, with the explicit definition here applicable to a homogeneous,
nonabsorbing medium. The Stokes parameters Q, U, and V describe the
polarization state of the wave. The ellipsometric interpretation of the Stokes
parameters will be the subject of the next section. It is easy to verify that the
Stokes parameters of a plane monochromatic wave are not completely
independent but rather are related by the quadratic identity

.    2222 VUQI ++= (7.8)

We will see later, however, that this identity may not hold for a quasi-
monochromatic beam of light.

The coherency matrix and the Stokes vector are not the only
representations of polarization and not always the most convenient ones. Two
other frequently used representations are the real so-called modified Stokes
column vector given by
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MS BII (7.9)

and the complex circular-polarization column vector defined as

,
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where
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It is easy to verify that
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MS 1    IBI −= (7.13)

and

,    CP 1 IAI −= (7.14)

where
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and
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=−A (7.16)

The usefulness of the modified and circular-polarization Stokes vectors will be
illustrated in the following section.

We conclude this section with a caution. It is important to remember that
whereas the Poynting vector can be defined for an arbitrary electromagnetic
field, the Stokes parameters can only be defined for transverse fields such as
plane waves discussed in the previous section or spherical waves discussed in
Section 12. Quite often the electromagnetic field at an observation point is not
a well-defined transverse electromagnetic wave, in which case the Stokes
vector formalism cannot be applied directly.

8. Ellipsometric interpretation of the Stokes parameters

In this section we show how the Stokes parameters can be used to derive the
ellipsometric characteristics of the plane electromagnetic wave given by Eq.
(7.1).  Writing

),iexp(    0 θθθ ∆aE = (8.1)
)iexp(    0 ϕϕϕ ∆aE = (8.2)

 with real nonnegative amplitudes θa  and ϕa  and real phases θ∆  and ϕ∆  and
recalling the definition (7.4), we obtain for the Stokes parameters

),    (  
2
1    22

ϕθµ
aaI += � (8.3)

),    (  
2
1    22

ϕθµ
aaQ −= � (8.4)
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,cos      ∆
µ ϕθ aaU �−= (8.5)

,sin     ∆
µ ϕθ aaV �= (8.6)

where

.        ϕθ ∆∆∆ −= (8.7)

Substituting Eqs. (8.1) and (8.2) into Eq. (7.1), we have for the real electric
vector

),    cos(    ) ,( tat ωδθθθ −=rE (8.8)
),    cos(    ) ,( tat ωδϕϕϕ −=rE (8.9)

where
,ˆ        rn ⋅+= kθθ ∆δ (8.10)
.ˆ        rn ⋅+= kϕϕ ∆δ (8.11)

At any fixed point O in space, the endpoint of the real electric vector given by
Eqs. (8.8)–(8.11) describes an ellipse with specific major and minor axes and
orientation (see the top panel of Fig. 8.1). The major axis of the ellipse makes
an angle ζ  with the positive direction of the ϕ -axis such that ).,0[    πζ ∈  By
definition, this orientation angle is obtained by rotating the ϕ -axis in the
clockwise direction when looking in the direction of propagation, until it is
directed along the major axis of the ellipse. The ellipticity is defined as the
ratio of the minor to the major axes of the ellipse and is usually expressed as

βtan , where ].4 ,4[    ππβ −∈  By definition, β  is positive when the real
electric vector at O rotates clockwise, as viewed by an observer looking in the
direction of propagation (Fig. 8.1(a)). The polarization for positive β  is called
right-handed, as opposed to the left-handed polarization corresponding to the
anti-clockwise rotation of the electric vector.

To express the orientation ζ  of the ellipse and the ellipticity βtan  in
terms of the Stokes parameters, we first write the equations representing the
rotation of the real electric vector at O in the form

),    sin(sin    ) ,( tatq ωδβ −=rE (8.12)
),    cos(cos    ) ,( tatp ωδβ −=rE      (8.13)

where pE  and qE  are the electric field components along the major and
minor axes of the ellipse, respectively (Fig. 8.1). One easily verifies that a
positive (negative) β  indeed corresponds to the right-handed (left-handed)
polarization. The connection between Eqs. (8.8)–(8.11) and Eqs. (8.12)–(8.13)
can be established by using the simple transformation rule for rotation of a
two-dimensional coordinate system:
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,sin) ,(    cos) ,(    ) ,( ζζθ ttt pq rrr EEE +−= (8.14)
.cos) ,(    sin) ,(    ) ,( ζζϕ ttt pq rrr EEE −−= (8.15)

By equating the coefficients of tωcos  and tωsin  in the expanded Eqs. (8.8)

(a) Polarization ellipse

(b) Elliptical polarization (V ≠ 0)

(c) Linear polarization (V = 0)

(d) Circular polarization (Q = U = 0)

Q < 0 U = 0 V < 0 Q > 0 U = 0 V > 0 Q = 0 U > 0 V < 0 Q = 0 U < 0 V > 0

Q = –I U = 0 Q = I U = 0 Q = 0 U = = 0 U = –I

V = – = I

E

q θ

p

ϕ

ζβ

I Q

I V

Figure 8.1: Ellipse described by the tip of the real electric vector at a fixed point O in
space (top panel) and particular cases of elliptical, linear, and circular polarization. The
plane electromagnetic wave propagates in the direction φθ ˆˆ ×  (i.e., towards the reader).
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and (8.9) with those in (8.14) and (8.15), we obtain

,sincoscos    cossinsin    cos ζδβζδβδθθ aaa +−= (8.16)
,sinsincos    coscossin    sin ζδβζδβδθθ aaa += (8.17)

,coscoscos    sinsinsin    cos ζδβζδβδϕϕ aaa −−= (8.18)
.cossincos    sincossin    sin ζδβζδβδϕϕ aaa −= (8.19)

Squaring and adding Eqs. (8.16) and (8.17) and Eqs. (8.18) and (8.19) gives

),sincos    cos(sin    222222 ζβζβθ += aa (8.20)

).coscos    sin(sin    222222 ζβζβϕ += aa (8.21)

Multiplying Eqs. (8.16) and (8.18) and Eqs. (8.17) and (8.19) and adding
yields

.2sin2cos     cos 2
2
1 ζβ∆ϕθ aaa −= (8.22)

Similarly, multiplying Eqs. (8.17) and (8.18) and Eqs. (8.16) and (8.19) and
subtracting gives

.2sin     sin 2
2
1 β∆ϕθ aaa −= (8.23)

Comparing Eqs. (8.3)–(8.6) with Eqs. (8.20)–(8.23), we finally derive

,  
2
1    2aI

µ
�= (8.24)

,2cos2cos    ζβIQ −= (8.25)
,2sin2cos    ζβIU = (8.26)

.2sin    βIV −= (8.27)

The parameters of the polarization ellipse are thus expressed in terms of
the Stokes parameters as follows. The major and minor axes are given by

βµ cos2 �I  and ,sin 2 βµ �I  respectively (cf. Eqs. (8.12) and
(8.13)).  Equations (8.25) and (8.26) yield

.     2tan
Q
U−=ζ (8.28)

Because ,4      πβ ≤  we have 0    2cos ≥β  so that ζ2cos  has the same sign
as –Q.  Therefore, from the different values of ζ  that satisfy Eq. (8.28) but
differ by ,2π  we must choose the one that makes the sign of ζ2cos  to be
the same as that of  –Q.  The ellipticity and handedness follow from

.
  

     2tan
22 UQ

V

+
−=β (8.29)
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Thus, the polarization is left-handed if V is positive and is right-handed if V is
negative (Fig. 8.1(b)).

The electromagnetic wave is linearly polarized when ;0=β  then the
electric vector vibrates along the line making the angle ζ  with the ϕ -axis (cf.
Fig. 8.1) and V = 0. Furthermore, if 0=ζ  or 2πζ =  then U vanishes as well.
This explains the usefulness of the modified Stokes representation of
polarization given by Eq. (7.9) in situations involving linearly polarized light
as follows. The modified Stokes vector has only one non-zero element and is
equal to T]0  0  0  [I  if 2πζ =  (the electric vector vibrates along the θ -axis,

i.e., in the meridional plane) or T]0  0    0[ I  if 0=ζ  (the electric vector
vibrates along the ϕ -axis, i.e., in the plane perpendicular to the meridional
plane), where T indicates the transpose of a matrix (see Fig. 8.1(c)). 

If, however, ,4    πβ ±=  then both Q and U vanish, and the electric vector
describes a circle in the clockwise ( IV −==       ,4    πβ ) or anti-clockwise
( IV       ,4    =−= πβ ) direction, as viewed by an observer looking in the
direction of propagation (Fig. 8.1(d)). In this case the electromagnetic wave is
circularly polarized; the circular-polarization vector CPI  has only one non-zero
element and takes the values T]0    0  0[ I  and ,]0  0    0[ TI  respectively (see
Eq. (7.10)).

The polarization ellipse along with a designation of the rotation direction
(right- or left-handed) fully describes the temporal evolution of the real
electric vector at a fixed point in space.  This evolution can also be visualized
by plotting the curve in ) , ,( tϕθ  coordinates described by the tip of the
electric vector as a function of time. For example, in the case of an elliptically
polarized plane wave with right-handed polarization, the curve is a right-
handed helix with an elliptical projection onto the -θϕ plane centered around
the t-axis (cf. Fig. 8.2(a)). The pitch of the helix is simply ,2 ωπ  where ω  is
the angular frequency of the wave. Another way to visualize a plane wave is to
fix a moment in time and draw a three-dimensional curve in ) , ,( sϕθ
coordinates described by the tip of the electric vector as a function of a spatial
coordinate rn ⋅= ˆ    s  oriented along the direction of propagation n̂ . According
to Eqs. (8.8)–(8.11), the electric field is the same for all position-time
combinations with constant .tks ω−  Therefore, at any instant of time (say, t =
0) the locus of the points described by the tip of the electric vector originating
at different points on the s axis is also a helix with the same projection onto the
θϕ -plane as the respective helix in the ) , ,( tϕθ  coordinates, but with opposite
handedness. For example, for the wave with right-handed elliptical
polarization shown in Fig. 8.2(a), the respective curve in the ) , ,( sϕθ
coordinates is a left-handed elliptical helix shown in Fig. 8.2(b). The pitch of
this helix is the wavelength .λ  It is now clear that the propagation of the wave
in time and space can be represented by progressive movement in time of the
helix shown in Fig. 8.2(b) in the direction of n̂  with the speed of light. With
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increasing time, the intersection of the helix with any plane s = constant
describes a right-handed vibration ellipse. In the case of a circularly polarized
wave, the elliptical helix becomes a helix with a circular projection onto the
θϕ -plane. If the wave is linearly polarized, then the helix degenerates into a
simple sinusoidal curve in the plane making the angle ζ  with the -ϕ axis
(Fig. 8.2(c)).

(a)

(b)

(c)

t

s

s

 

 

  

n̂

n̂ ζ

θ

ϕ

θ

θ

ϕ

ϕ

ωπ2

λ

Figure 8.2: (a) The helix described by the tip of the real electric vector of a plane
electromagnetic wave with right-handed polarization in ),,( tϕθ  coordinates at a
fixed point in space. (b) As in (a), but in ),,( sϕθ  coordinates at a fixed moment in
time. (c) As in (b), but for a linearly polarized wave.
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9.  Rotation transformation rule for Stokes parameters

The Stokes parameters of a plane electromagnetic wave are always defined
with respect to a reference plane containing the direction of wave propagation.
If the reference plane is rotated about the direction of propagation, then the
Stokes parameters are modified according to a rotation transformation rule,
which can be derived as follows. Consider a rotation of the coordinate axes θ
and ϕ  through an angle πη 2        0 <≤  in the clockwise direction when looking
in the direction of propagation (Fig. 9.1). The transformation rule for rotation
of a two-dimensional coordinate system yields

,sin    cos    000 ηη ϕθθ EEE +=′ (9.1)
,cos    sin    000 ηη ϕθϕ EEE +−=′ (9.2)

where the primes denote the electric field vector components with respect to
the new reference frame. It then follows from Eq. (7.4) that the rotation
transformation rule for the Stokes column vector is

,)(    ILI η=′ (9.3)
where
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1000
02cos2sin0
02sin2cos0
0001

    )(
ηη
ηη

ηL (9.4)

is the so-called Stokes rotation matrix for angle η . It is obvious that a πη     =
rotation does not change the Stokes parameters.

Because

,)(    )(        )( MS 1MS IBBLIBLIBI −==′=′ ηη  (9.5)

ˆ′ˆ

′ˆ

η

n̂

Oˆ
η

Figure 9.1: Rotation of the -θ  and -ϕ axes through an angle 0≥η  around n̂  in
the clockwise direction when looking in the direction of propagation.
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the rotation matrix for the modified Stokes vector is given by

.
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Similarly, for the circular polarization representation,

,)(    )(        )( CP 1CP IAALIALIAI −==′=′ ηη (9.7)

and the corresponding rotation matrix is diagonal [12]:
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10.  Quasi-monochromatic light

The definition of a monochromatic plane electromagnetic wave given by Eq.
(7.1) implies that the complex amplitude 0E  is constant. In reality, the
complex amplitude often fluctuates in time, albeit much slower than the time
factor ).iexp( tω−  The fluctuations of the complex amplitude include, in
general, fluctuations of both the amplitude and the phase of the real electric
vector.

It is straightforward to verify that the electromagnetic field given by

),i  iexp()(    ) ,( 0 ttt ω−⋅= rkErE (10.1)
)i  iexp()(    ) ,( 0 ttt ω−⋅= rkHrH (10.2)

still satisfies the Maxwell equations (2.1)–(2.4) at any moment in time
provided that the medium is homogeneous and source-free and that

,0    )(0 =⋅ tEk (10.3)
,0    )(0 =⋅ tHk (10.4)

),(µ    )( 00 tt HEk ω=× (10.5)
),(    )( 00 tt EHk ωε−=× (10.6)

 )( 0

t
t

∂
∂E  � ,)(0 tEω (10.7)

 )( 0

t
t

∂
∂H  � .)(0 tHω (10.8)

Equations (10.1)–(10.8) collectively define a quasi-monochromatic beam of
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light. Although the typical frequency of the fluctuations of the complex
electric and magnetic field amplitudes is much smaller than the angular
frequency ,ω  it is still so high that most optical instruments are incapable of
tracing the instantaneous values of the Stokes parameters but rather respond to
an average of the Stokes parameters over a relatively long period of time.
Therefore, the definition of the Stokes parameters for a quasi-monochromatic
beam of light propagating in a homogeneous nonabsorbing medium must be
modified as follows:

],)()(    )()([ 
2
1    0000 tt tEtEtEtEI ��+��= ∗∗

ϕϕθθµ
� (10.9)

],)()(    )()([ 
2
1    0000 tt tEtEtEtEQ ��−��= ∗∗

ϕϕθθµ
�     (10.10)

],)()(    )()([ 
2
1     0000 tt tEtEtEtEU ��+��−= ∗∗

θϕϕθµ
�     (10.11)

],)()(    )()([ 
2
1i    0000 tt tEtEtEtEV ��−��= ∗∗

ϕθθϕµ
�     (10.12)

where

)( d  1    )(
  

  
ττ f

T
tf

Tt

t
t

+
=��     (10.13)

denotes the average over a time interval T long compared with the typical
period of fluctuation.

The Stokes identity (7.8) is not, in general, valid for a quasi-
monochromatic beam. Indeed, now we have
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thereby yielding

.        2222 VUQI ++≥     (10.15)

The equality holds only if the ratio )()( tata ϕθ  of the real amplitudes and the
phase difference )(t∆  are independent of time, which means that )(0 tE θ  and

)(0 tE ϕ  are completely correlated.  In this case the beam is said to be fully (or
completely) polarized. This definition includes a monochromatic plane wave,
but is, of course, more general. On the other hand, if ),(taθ  ),(taϕ  ),(tθ∆  and

)(tϕ∆  are totally uncorrelated and tt aa ��=��
22     ϕθ  then Q = U = V = 0, and the

quasi-monochromatic beam of light is said to be unpolarized (or natural). This
means that the parameters of the vibration ellipse traced by the endpoint of the
electric vector fluctuate in such a way that there is no preferred vibration
ellipse.

When two or more quasi-monochromatic beams propagating in the same
direction are mixed incoherently, which means that there is no permanent
phase relation between the separate beams, then the Stokes vector of the
mixture is equal to the sum of the Stokes vectors of the individual beams:

,     =
n

nII     (10.16)

where n numbers the beams. Indeed, inserting Eqs. (8.1) and (8.2) in Eq.
(10.9), we obtain for the total intensity

−�=
n m

mnmnaaI )]    (iexp[ 
2
1    θθθθ ∆∆

µ
�

   tmnmnaa �−+ )]    (iexp[  ϕϕϕϕ ∆∆

       
≠

−�+=
n nm

mnmn
n

n aaI )]    (iexp[    
2
1  { θθθθ ∆∆

µ
�

       .)](iexp[  }tmnmnaa �−+ ϕϕϕϕ ∆∆  
     (10.17)

Since the phases of different beams are uncorrelated, the second term on the
right-hand side of the relation above vanishes.  Hence
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,     =
n

nII     (10.18)

and similarly for Q, U, and V. Of course, this additivity rule also applies to the
coherency matrix ,ρ  the modified Stokes vector ,MSI  and the circular-

polarization vector .CPI
The additivity of the Stokes parameters allows us to generalize the

principle of optical equivalence (Section 7) to quasi-monochromatic light as
follows: it is impossible by means of a traditional optical instrument to
distinguish between various incoherent mixtures of quasi-monochromatic
beams that form a beam with the same Stokes parameters ). , , ,( VUQI  For
example, there is only one kind of unpolarized light, although it can be
composed of quasi-monochromatic beams in an infinite variety of optically
indistinguishable ways.

According to Eqs. (10.15) and (10.16), it always is possible mathematically
to decompose any quasi-monochromatic beam into two incoherent parts, one
unpolarized with a Stokes vector

 ,0]   0   0           [ T222 VUQI ++−

and one fully polarized, with a Stokes vector

.]             [ T222 VUQVUQ ++

Thus, the intensity of the fully polarized component is ,    222 VUQ ++  so
that the degree of (elliptical) polarization of the quasi-monochromatic beam is

.
    

    
222

I
VUQ

P
++

=     (10.19)

The degree of linear polarization is defined as

IUQP 22
L       +=     (10.20)

and the degree of circular polarization as

.    C I
VP =     (10.21)

P vanishes for unpolarized light and is equal to unity for fully polarized light.
For a partially polarized beam ( 1        0 << P ) with ,0≠V  the sign of V
indicates the preferential handedness of the vibration ellipses described by the
endpoint of the electric vector. Specifically, a positive V indicates left-handed
polarization and a negative V indicates right-handed polarization. By analogy

with Eqs. (8.28) and (8.29), the quantities QU−  and 22   UQV +  can be
interpreted as specifying the preferential orientation and ellipticity of the
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vibration ellipse. Unlike the Stokes parameters, these quantities are not
additive. According to Eqs. (9.3) and (9.4), the P, ,LP  and CP  are invariant
with respect to rotations of the reference frame around the direction of
propagation.

When U = 0, the ratio
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++=
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=

=−=

+=
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22
L

:onpolarizaticircular

)0(for
:onpolarizatilinear

ofDegree

lightnatural:0=P

lightpolarizedpartially:10 << P lightpolarizedfully:1=P

222tan:yellipticitalPreferenti UQV +=β

<
=
>

handed-right:0
onpolarizatilinearonly:0
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)(sign)2(cossignand2tanthen0If

43then0
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Figure 10.1: Analysis of a quasi-monochromatic beam with Stokes parameters I, Q, U,
and V.
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I
QPQ       −=     (10.22)

is also called the degree of linear polarization (or the signed degree of linear
polarization). QP  is positive when the vibrations of the electric vector in the
ϕ -direction (i.e., in the direction perpendicular to the meridional plane of the
beam) dominate those in the -θ direction, and is negative otherwise.

The standard polarimetric analysis of a general quasi-monochromatic beam
with Stokes parameters I, Q, U, and V is summarized in Fig. 10.1.

11.  Measurement of the Stokes parameters

Most detectors of electromagnetic radiation, especially those in the visible and
infrared spectral range, are insensitive to the polarization state of the beam
impinging on the detector surface and can measure only the first Stokes
parameter of the beam, viz., the intensity. Therefore, to measure the entire
Stokes vector of the beam, one has to insert between the source of light and the
detector one or several optical elements that modify the first Stokes parameter
of the radiation reaching the detector in such a way that it contains information
about the second, third, and fourth Stokes parameters of the original beam.
This is usually done with so called polarizers and retarders.

A polarizer is an optical element that attenuates the orthogonal components
of the electric field vector of an electromagnetic wave unevenly. Let us denote
the corresponding attenuation coefficients as θp  and ϕp  and consider first the
situation when the two orthogonal transmission axes of a polarizer coincide
with the -θ  and -ϕ axes of the laboratory coordinate system (see Fig. 11.1).
This means that after the electromagnetic wave goes through the polarizer, the
orthogonal components of the electric field change as follows:

n̂

θp

ϕp

Polarizerϕ

θ

θ

ϕ

Figure 11.1: The transmission axes of the polarizer coincide with those of the
laboratory reference frame.
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,1        0      ,    ≤≤=′ θθθθ pEpE (11.1)
.1      0      ,    ≤≤=′ ϕϕϕϕ pEpE (11.2)

It then follows from the definition of the Stokes parameters that the Stokes
vector of the wave modifies according to

,   PI I =′ (11.3)

where
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is the so-called Mueller matrix of the polarizer.
An important example of a polarizer is a neutral filter with ,ppp == ϕθ

which equally attenuates the orthogonal components of the electric field vector
and does not change the polarization state of the wave:
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In contrast, an ideal linear polarizer transmits only one orthogonal component
of the wave (say, the θ  component) and completely blocks the other one
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An ideal perfect linear polarizer does not change one orthogonal component
)1  ( =θp  and completely blocks the other one :)0  ( =ϕp
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If the transmission axes of a polarizer are rotated relative to the laboratory
coordinate system (Fig. 11.2) then its Mueller matrix with respect to the
laboratory coordinate system also changes. To obtain the resulting Stokes
vector with respect to the laboratory coordinate system, we need to
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1. “rotate” the initial Stokes vector through the angle η  in the clockwise
direction in order to obtain the Stokes parameters of the original beam
with respect to the polarizer axes;

2. multiply the “rotated” Stokes vector by the original (non-rotated)
polarizer Mueller matrix; and finally

3. “rotate” the Stokes vector thus obtained through the angle η−  in order
to calculate the Stokes parameters of the resulting beam with respect
to the laboratory coordinate system.

The final result is as follows:

n̂

η

Polarizer

θp

ϕp

ϕ

θ

θ

ϕ

θ

ϕ

Figure 11.2: The polarizer transmission axes are rotated through an angle 0≥η
around n̂  in the clockwise direction when looking in the direction of propagation.

n̂

2ζ+

2ζ−

Retarder

θ

θ

ϕ

ϕ

Figure 11.3: Propagation of a beam through a retarder.
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.)()(   IPLL I ηη−=′ (11.8)

Hence the Mueller matrix of the rotated polarizer computed with respect to the
laboratory coordinate system is given by

)()(   )( ηηη PLL P −= (11.9)

with .   )0( P P =
A retarder is an optical element that changes the phase of the beam by

causing a phase shift of 2ζ+  along the -θ axis and a phase shift of 2ζ−
along the -ϕ axis (Fig. 11.3). We thus have

,)2iexp(    θθ ζ EE +=′     (11.10)
,)2iexp(    ϕϕ ζ EE −=′     (11.11)

which yields

,)(   IR I ζ=′     (11.12)
where
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is the Mueller matrix of the retarder.

η

n̂

2ζ+

2ζ−

Retarder

plane
Detector

beam
Incident

polarizer
Linear

ϕ

ϕ

ϕ

ϕp

θ

θ

θ

θp

Figure 11.4: Measurement of the Stokes parameters with a retarder and an ideal
perfect linear polarizer rotated with respect to the laboratory reference frame.
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Consider now the optical path shown in Fig. 11.4. The beam of light goes
through a retarder and a rotated ideal perfect linear polarizer and then
impinges on the surface of a polarization-insensitive detector. The Stokes
vector of the resulting beam impinging on the detector surface is given by

 ,)()(   IRP I ζη=′     (11.14)

 where the polarizer Mueller matrix is
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(cf. Eqs. (11.7) and (11.9)). Hence the intensity of the resulting beam as a
function of η  and ζ  is given by

).sin2sin    cos2sin    2cos    (    ) ,( 2
1 ζηζηηζη VUQII −−+=′     (11.16)

This formula suggests a simple way to determine the Stokes parameters of the
original beam by measuring the intensity of the resulting beam using four
different combinations of η  and :ζ

),0 ,90(    )0 ,0(    °°′+°°′= III     (11.17)

),0 ,90(    )0 ,0(    °°′−°°′= IIQ     (11.18)

,    )0 ,45(2     IIU +°°′−=     (11.19)

).09 ,45(2        °°′−= IIV     (11.20)

Other methods for measuring the Stokes parameters and practical aspects
of polarimetry are discussed in detail in [14–17].

12.  Spherical wave solution

As we have seen, plane electromagnetic waves represent a fundamental
solution of the Maxwell equations underlying the concept of a monochromatic
parallel beam of light. Another fundamental solution representing the outward
propagation of electromagnetic energy from a point-like source is a transverse
spherical wave. To derive this solution, we need Eqs. (4.3), (4.4), (4.11),
(4.16), (4.17), (6.1), and (6.2) as well as the following formulas:
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It is then straightforward to verify that the complex field vectors

),i exp()ˆ( )iexp(    ) ,( 1 t
r

krt ω−= rErE (12.4)

)i exp()ˆ( )iexp(    ) ,( 1 t
r

krt ω−= rHrH (12.5)

are a solution of the Maxwell equations in the limit ∞→    kr  provided that the
medium is homogeneous and that

,0    )ˆ(ˆ 1 =⋅ rEr (12.6)

,0    )ˆ(ˆ 1 =⋅ rHr (12.7)

),ˆ(µ    )ˆ(ˆ 11 rHrEr ω=×k (12.8)

),ˆ(    )ˆ(ˆ 11 rErHr ωε−=×k (12.9)

where the wavenumber ckkk mωεω     µ    i    IR ==+=  may be complex and
the )ˆ(1 rE  and )ˆ(1 rH  are independent of the distance r from the origin.

Equations (12.4)–(12.9) describe an outgoing transverse spherical wave
propagating radially with the phase velocity R    kω=v  and having mutually
perpendicular complex electric and magnetic field vectors. The wave is
homogeneous in that the real and imaginary parts of the complex wave vector

r̂k  are parallel. The surfaces of constant phase coincide with the surfaces of
constant amplitude and are spherical. Obviously,

),,(ˆ 
µ

    ),( tkt rErrH ×=
ω

    (12.10)

which allows one to consider the spherical wave in terms of the electric (or
magnetic) field only. The time-averaged Poynting vector of the wave is given
by
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where, as before, .    II ωck=m  The intensity of the spherical wave is defined
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as the absolute value of the time-averaged Poynting vector,
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The intensity has the dimension of monochromatic energy flux and specifies
the amount of electromagnetic energy crossing a unit surface element normal
to r̂  per unit time. The intensity is attenuated exponentially by absorption and
in addition decreases as the inverse square of the distance from the origin.

In the case of a medium with no dispersion and losses, the real electric and
magnetic field vectors are mutually orthogonal and are normal to the direction
of propagation r̂  (Fig. 12.1). The energy conservation law takes the form
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where S is the sphere of radius r and

ϕθθ d d sin    d    ˆd 2 ==
r
Sr     (12.14)

is an infinitesimal solid angle element around the direction .r̂  It is also easy to

E

r̂

  r

  H

 

O

Surface of constant phase
and constant amplitude

Figure 12.1: Spherical electromagnetic wave propagating in a homogeneous
medium with no dispersion and losses.
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show that in the case of a nonabsorbing medium, the time-averaged energy
density of a spherical wave is given by

.
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Equations (12.12) and (12.15) show that ,) ,(    )( ttuI ��= rr v  where

 1    µ�=v  is the speed of light in the material medium. This is the same
result as that obtained previously for a plane wave propagating in a
nonabsorbing medium (cf. Eq. (6.30)).

In complete analogy with the case of a plane wave, the coherency matrix,
the coherency column vector, and the Stokes column vector of a spherical
wave propagating in a homogeneous medium with no dispersion and losses
can be defined as

,
)ˆ()ˆ()ˆ()ˆ(
)ˆ()ˆ()ˆ()ˆ( 1  

2
1    

)()(
)()(

    )(
1111

1111
22221

1211

�
�
�

�

�
�
�

�
=�

�

�
�
�

�= ∗∗

∗∗

rrrr
rrrr

rr
rr

r
ϕϕθϕ

ϕθθθ

µρρ
ρρ

EEEE
EEEE

r
�ρ

      (12.16)

,

)ˆ()ˆ(
)ˆ()ˆ(
)ˆ()ˆ(
)ˆ()ˆ(

 1  
2
1    

)(
)(
)(
)(

    )(

11

11

11

11

2

22

21

12

11

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

�
�
�
�

�

�

�
�
�
�

�

�

=

∗

∗

∗

∗

rr
rr
rr
rr

r
r
r
r

r

ϕϕ

θϕ

ϕθ

θθ

µ
EE
EE
EE
EE

r
ρ
ρ
ρ
ρ

�J     (12.17)

,

)]ˆ()ˆ(    )ˆ()ˆ([i
)ˆ()ˆ(    )ˆ()ˆ(

)ˆ()ˆ(    )ˆ()ˆ(
)ˆ()ˆ(    )ˆ()ˆ(

 1  
2
1    )(    

)(
)(
)(
)(

    )(

1111

1111

1111

1111

2

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−
−−

−
+

==

�
�
�
�

�

�

�
�
�
�

�

�

=

∗∗

∗∗

∗∗

∗∗

rrrr
rrrr

rrrr
rrrr

r

r
r
r
r

r

ϕθθϕ

θϕϕθ

ϕϕθθ

ϕϕθθ

µ
EEEE
EEEE

EEEE
EEEE

r
V
U
Q
I

�DJI

    (12.18)

respectively. All these quantities have the dimension of monochromatic energy
flux. As before, the first Stokes parameter is the intensity (defined this time by
Eq. (12.12)).

13.  Coherency dyad

The definition of the coherency and Stokes vectors explicitly exploits the
transverse character of an electromagnetic wave and requires the use of a local
spherical coordinate system. However, in some cases it is convenient to
introduce an alternative quantity, which also provides a complete optical
specification of a transverse electromagnetic wave, but is defined without
explicit use of a coordinate system. This quantity is called the coherency dyad
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and, in the general case of an arbitrary electromagnetic field, is given by

), ,() ,(    ) ,( ttt rErEr ∗⊗=ρ�   (13.1)

where ⊗  denotes the dyadic product of two vectors. It is then clear that the
coherency and Stokes vectors of a transverse time-harmonic electromagnetic
wave can be expressed in terms of the coherency dyad as follows:
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whereas the products n̂⋅ρ�  and ρ�⋅n̂  vanish. It follows from the definition of the
coherency dyad that it is Hermitian:

.   )( T ∗= ρρ� (13.4)

The coherency dyad is a more general quantity than the coherency and Stokes
vectors because it can be applied to any electromagnetic field and not just to a
transverse electromagnetic wave. The simplest example of a situation in which
the coherency dyad can be introduced, whereas the Stokes vector cannot involves
the superposition of two plane electromagnetic waves propagating in different
directions. The more general nature of the coherency dyad makes the latter very
convenient in studies of random electromagnetic fields created by large stochastic
groups of scatterers. For example, the additivity of the Stokes parameters (Section
10) is a concept that can be applied only to transverse waves propagating in
exactly the same direction, whereas the average coherency dyad of a random
electromagnetic field at an observation point can sometimes be reduced to an
incoherent sum of coherency dyads of transverse waves propagating in various
directions [18,19].

It is important to remember, however, that when the coherency dyad is
applied to an arbitrary electromagnetic field, it may not always have as definite a
physical meaning as, for example, the Poynting vector. The relationship between
the coherency dyad and the actual physical observables may change depending on
the problem at hand and must be established carefully whenever this quantity is
used in a theoretical analysis of a specific measurement procedure. For example,
the right-hand sides of Eqs. (13.2) and (13.3) may become rather meaningless if
the products n̂⋅ρ�  and ρ�⋅n̂  do not vanish.
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14.  Historical notes and further reading

The equations of classical electromagnetics were written originally by James
Clerk Maxwell (1831–1979) in Cartesian component form [20] and were cast
in the modern vector form by Oliver Heaviside (1850–1925). The subsequent
experimental verification of Maxwell’s theory by Heinrich Rudolf Hertz
(1857–1894) made it a well-established discipline. Since then classical
electromagnetics has been a cornerstone of physics and has played a critical
role in the development of a great variety of scientific, engineering, and
biomedical disciplines. The fundamental nature of Maxwell’s electromagnetics
was ultimately asserted by the development of the special theory of relativity
by Jules Henri Poincaré (1854–1912) and Hendrik Antoon Lorentz (1853–
1928).

Sir George Gabriel Stokes (1819–1903) was the first to discover that four
parameters, now known as the Stokes parameters, could characterize the
polarization state of any light beam, including partially polarized and
unpolarized light [13]. Furthermore, he noted that unlike the quantities
entering the amplitude formulation of the optical field, these parameters could
be directly measured by a suitable optical instrument. The fascinating subject
of polarization had attracted the attention of many other great scientists before
and after Stokes, including Augustin Jean Fresnel (1788–1827), Dominique
François Arago (1786–1853), Thomas Young (1773–1829), Subrahmanyan
Chandrasekhar (1910–1995), and Hendrik van de Hulst (1918–2000). Even
Poincaré, who is rightfully considered to be one the greatest geniuses of all
time, could not help but contribute to this discipline by developing a useful
polarization analysis tool now known as the Poincaré sphere [21].

The two-volume monograph by Sir Edmund Whittaker [22] remains by far
the most complete and balanced account of the history of electromagnetism
from the time of William Gilbert (1544–1603) and René Descartes (1596–
1650) to the relativity theory. This magnificent work should be read by
everyone interested in a masterful and meticulously documented recreation of
the sequence of events and publications that shaped physics as we know it. In
this era of endless attempts to rewrite the history of modern physics by
ignorant and/or biased authors (including those of the numerous guides for
“dummies”), many of whom could not be bothered to study the original
sources and barely could understand the subject matter, the monumental
treatise by Whittaker is an ideal starting point for those individuals who want
to form their own opinions as it provides a presentation of facts rather gossip,
prejudices, and intentional distortions.

Comprehensive modern accounts of classical electromagnetics and optics
can be found in [1,2,7]. Extensive treatments of theoretical and experimental
polarimetry were provided by Shurcliff [14], Azzam and Bashra [15], Kliger et
al. [16], and Collett [17]. Pye [23] describes numerous manifestations of
polarization in science and nature.
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